|
Home
|
E-Submission/Review
|
Sitemap
|
Editorial Office
|
목적 및 범위
Aims and Scope
저널 정보
About the Journal
편집위원회
Editorial Board
Open Access
편집국
Editorial Office
논문투고안내
Instructions for Authors
연구윤리규정
Research and Publication Ethics
필수 점검 사항
Checklist
논문투고사이트
E-Submission
저작권이양동의서
Copyright Transfer Agreement
발간호 검색
All issues
출판전 논문
Online First
현재 발행 호
Current Issue
많이 읽힌 논문
Most Read Articles
많이 인용된 논문
Most Cited Articles
개별 논문 검색
Korean J. Met. Mater.
Search
저자 색인
Author Index
Korean Journal of Metals and Materials
Search
> Browse Articles > Search
R
e
a
l
-
T
i
m
e
P
o
s
i
t
i
o
n
D
e
t
e
c
t
i
n
g
o
f
L
a
r
g
e
-
A
r
e
a
C
N
T
-
b
a
s
e
d
T
a
c
t
i
l
e
S
e
n
s
o
r
s
b
a
s
e
d
o
n
A
r
t
i
f
i
c
i
a
l
I
n
t
e
l
l
i
g
e
n
c
e
인공지능을 기반으로 한 대면적 CNT 기반 촉각 센서의 실시간 위치 탐색 연구
M
i
n
-
Y
o
u
n
g
C
h
o
,
S
e
o
n
g
H
o
o
n
K
i
m
,
J
i
S
i
k
K
i
m
조민영, 김성훈, 김지식
Korean J. Met. Mater.
2022;60(10):793-799. Published online 2022 Sep 29
DOI:
https://doi.org/10.3365/KJMM.2022.60.10.793
Abstract
For medical device and artificial skin applications, etc., large-area tactile sensors have attracted strong interest as a key technology. However, only complex and expensive manufacturing methods such as fine pattern alignment technology have been considered. To replace the existing smart sensor, which has to go through a complicated process, a.....
More
Web of Science 2
Crossref 1
R
e
c
o
n
s
t
r
u
c
t
i
o
n
a
n
d
S
i
z
e
P
r
e
d
i
c
t
i
o
n
o
f
P
r
i
o
r
A
u
s
t
e
n
i
t
e
G
r
a
i
n
B
o
u
n
d
a
r
y
(
P
A
G
B
)
u
s
i
n
g
A
r
t
i
f
i
c
i
a
l
N
e
u
r
a
l
N
e
t
w
o
r
k
s
인공 신경망을 이용한 구오스테나이트 결정립계의 재구성 및 크기 예측
B
o
n
g
-
K
y
u
K
i
m
,
N
a
m
H
o
o
n
G
o
o
,
J
o
n
g
H
y
u
k
L
e
e
,
J
u
n
H
y
u
n
H
a
n
김봉규, 구남훈, 이종혁, 한준현
Korean J. Met. Mater.
2020;58(12):822-829. Published online 2020 Dec 4
DOI:
https://doi.org/10.3365/KJMM.2020.58.12.822
Abstract
To automatically reconstruct the prior austenite grains from as-quenched martensitic structure, we applied a deep learning algorithm to recognize the prior austenite grains boundaries hidden in the martensitic matrix. The FC-DenseNet architecture based on FCN (fully convolutional networks) was used to train the martensite and ground truth label of the.....
More
Web of Science 4
Crossref 3
E
s
t
i
m
a
t
i
o
n
o
f
C
h
e
m
i
c
a
l
C
o
m
p
o
s
i
t
i
o
n
o
f
A
l
-
S
i
C
a
s
t
A
l
l
o
y
s
U
s
i
n
g
I
m
a
g
e
R
e
c
o
g
n
i
t
i
o
n
화상인식을 이용한 Al-Si 주조용 합금의 화학조성 예측
S
a
n
g
-
J
u
n
J
e
o
n
g
,
I
n
-
K
y
u
H
w
a
n
g
,
I
n
-
S
u
n
g
C
h
o
,
H
e
e
-
S
o
o
K
i
m
정상준, 황인규, 조인성, 김희수
Korean J. Met. Mater.
2019;57(3):184-192. Published online 2019 Feb 14
DOI:
https://doi.org/10.3365/KJMM.2019.57.3.184
Abstract
In this study, we analyzed the chemical composition of Al-Si cast alloys from microstructural images, using image recognition and machine learning. Binary Al-Si alloys of Si = 1~10 wt% were cast and prepared as reference images in the dataset used for machine learning. The machine learning procedure was constructed with.....
More
Web of Science 9
Crossref 8
1
|
Journal Impact Factor 1.1