| Home | E-Submission/Review | Sitemap | Editorial Office |  
top_img
Korean Journal of Metals and Materials Search > Browse Articles > Search



Estimation of the Highest Thermoelectric Performance of the Bi-Doped SnTe at Room Temperature
Bi 도핑에 따른 SnTe의 상온 최대 열전성능지수 예측
Joonha Lee, Hyunjin Park, Jeong-Yeon Kim, Won-Seon Seo, Heesun Yang, Umut Aydemir, Se Yun Kim, Weon Ho Shin, Hyun-Sik Kim
이준하, 박현진, 김정연, 서원선, 양희선, Umut Aydemir, 김세윤, 신원호, 김현식
Korean J. Met. Mater. 2023;61(12):915-922.   Published online 2023 Nov 30
DOI: https://doi.org/10.3365/KJMM.2023.61.12.915

Abstract
SnTe has drawn much attention due to its Pb-free composition along with tunable electronic and lattice structures. However, its intrinsically high defect concentration and high lattice thermal conductivity (κ1) have hindered its application in devices. Recently, Bi doping at Sn-sites in Sn1-xBixTe (x = 0.0 – 0.08) has been demonstrated..... More

                
The Mechanism Behind the High zT of SnSe2 Added SnSe at High Temperatures
SnSe2 결함 도입으로 인한 SnSe의 고온 열전성능 증대 메커니즘
JunSu Kim, Seong-Mee Hwang, Hyunjin Park, Yinglu Tang, Won-Seon Seo, Chae Woo Ryu, Heesun Yang, Weon Ho Shin, Hyun-Sik Kim
김준수, 황성미, 박현진, Yinglu Tang, 서원선, 류채우, 양희선, 신원호, 김현식
Korean J. Met. Mater. 2023;61(11):857-866.   Published online 2023 Oct 29
DOI: https://doi.org/10.3365/KJMM.2023.61.11.857

Abstract
SnSe is a promising thermoelectric material due to its low toxicity, low thermal conductivity, and multiple valence band structures, which are ideal for high electronic transport properties. The multiple valence band structure has attracted many attempts to engineer the carrier concentration of the SnSe via doping, to place its fermi..... More

                
The Mechanism behind the High Thermoelectric Performance in YbCd2-xMgxSb2
YbCd2-xMgxSb2 열전 합금의 열전 성능 증대 메커니즘 분석
Seung-Hwan Kwon, Sang-il Kim, Minsu Heo, Won-Seon Seo, Jong Wook Roh, Heesun Yang, Hyun-Sik Kim
권승환, 김상일, 허민수, 서원선, 노종욱, 양희선, 김현식
Korean J. Met. Mater. 2023;61(3):198-205.   Published online 2023 Feb 24
DOI: https://doi.org/10.3365/KJMM.2023.61.3.198

Abstract
YbCd2Sb2 is a promising Zintl compound for waste heat recovery applications due to its low thermal conductivity, originating from its complex crystal structure. Many strategies such as alloying or doping have been suggested to further reduce the thermal conductivity of YbCd2Sb2 to improve its thermoelectric performance. However, the..... More

                   Web of Science 1  Crossref 1
Characterization of Electronic Transport Properties of Narrow-Band Gap Fe(Se1-xTex)2 Alloys via the Two-Band Model
Two-Band 모델을 이용한 작은 밴드 갭을 가진 Fe(Se1-xTex)2 열전합금의 전기적 수송 특성 분석
Seong-Mee Hwang, Sang-il Kim, Min-Su Heo, Kiyoung Lee, Heesun Yang, Won-Seon Seo, Hyun-Sik Kim
황성미, 김상일, 허민수, 이기영, 양희선, 서원선, 김현식
Korean J. Met. Mater. 2023;61(2):98-106.   Published online 2023 Jan 27
DOI: https://doi.org/10.3365/KJMM.2023.61.2.98

Abstract
Environmentally sustainable thermoelectric technologies can be more broadly applied in industries once the performance of thermoelectric materials is improved. Several approaches have been proposed to improve the electronic transport properties of thermoelectric materials. The effects of each approach on the electronic properties can be evaluated by changes in the band..... More

                
Impact of Fermi Surface Shape Engineering on Calculated Electronic Transport Properties of Bi-Sb-Te
페르미 면 형상제어에 따른 Bi-Sb-Te 이론 전자수송 특성 변화
Sang-il Kim, Jong-Chan Lim, Heesun Yang, Hyun-Sik Kim
김상일, 임종찬, 양희선, 김현식
Korean J. Met. Mater. 2021;59(1):54-60.   Published online 2021 Jan 5
DOI: https://doi.org/10.3365/KJMM.2021.59.1.54

Abstract
Using thermoelectric refrigerators can address climate change because they do not utilize harmful greenhouse gases as refrigerants. To compete with current vapor compression cycle refrigerators, the thermoelectric performance of materials needs to be improved. However, improving thermoelectric performance is challenging because of the trade-off relationship between the Seebeck coefficient and..... More

                   Web of Science 6  Crossref 6
1 |
E-Submission
Email Alert
Author's Index
Specialties
Journal Impact Factor 1.1
The Korean Institute of Metals and Materials
SCImago Journal & Country Rank
Scopus
GoogleScholar
Similarity Check
Crossref Cited-by Linking
KOFST
COPE
Editorial Office
The Korean Institute of Metals and Materials
6th Fl., Seocho-daero 56-gil 38, Seocho-gu, Seoul 06633, Korea
TEL: +82-2-557-1071   FAX: +82-2-557-1080   E-mail: metal@kim.or.kr
About |  Browse Articles |  Current Issue |  For Authors and Reviewers
Copyright © The Korean Institute of Metals and Materials.                 Developed in M2PI